Tetrahedron Letters No. 27, pp. 1917-1919, 1963. Pergamon Press Ltd. Printed in Great Britain.

14-EPIVINCAMINE, A NEW ALKALOID FROM VINCA MINOR L.

J.Mokrý and I.Kompiš

Czechoslovak Academy of Sciences Department of Alkaloids, Institute of Chemistry, Slovak Academy of Sciences, Bratislava (Received 29 August 1963; in revised form 1 October 1963)

Two orystalline alkaloids were obtained through repeated counter-current distribution in benzene-<u>n</u>-butanol--85%-formic acid-McIlvain buffer pH=3.5, ratio 25:5:1:31; 460 resp.l00 transfers, followed by chromatography on alumina, activity II, benzene + 0.5% MeOH, from fraction P_1 of the alkaloids from <u>Vinca minor</u> L.¹ The first alkaloid has been recognized as vincamine,² and the description of the second follows.

The new alkaloid (I) with melting point $181-185^{\circ}$, $[\mathfrak{cl}]_D^{22^{\circ}} = -36,4 \pm 2^{\circ}$ (o = 1.036; chloroform) belongs on the basis of its ultra-violet spectrum, $\lambda \underset{\max}{\text{EtOH}}$ 226 and 276 mµ, $\log \mathfrak{E}$ 4.51 and 3.93; $\lambda \underset{\min}{\text{EtOH}}$ 250 mµ, $\log \mathfrak{E}$ 3.57 to the indole group of alkaloids. The infrared spectra in KBr and in CCl_4 indicated the presence of an unconjugated ester group (1742 cm⁻¹), hydroxy group (3530 cm⁻¹), no free NH group

¹ J.Mokrý, I.Kompiš, P.Šefčovič and Š.Bauer, <u>Coll.Czech.Chem</u>. <u>Communs.</u> 28, 1309 (1963).

² E.Schlittler and A.Furlenmeier, <u>Helv.Chim.Acta</u> <u>36</u>, 2017 (1953) and other papers.

and a disubstituted benzene ring (745 om^{-1}) . Its molecular formula according to analysis is $C_{21}H_{26}N_2O_3$ which was also proven by mass spectrometry with a molecular ion peak at <u>m/e</u> 354. The mass spectrum with peaks at M-15, M-18, M-29, M-47, M-59, M-70 and the intensive peak M-102 was nearly identical with that of vincamine (II)³, differing in the intensity of some peaks and mainly in the peak at <u>m/e</u> 266, which in the mass spectrum of vincamine is shifted to <u>m/e</u> 267. This fragmentation indicated a dihydroeburnamenine skeleton for this new alkaloid, so that it could conceivably be a diastereoisomer of vincamine (II), where either the functional groups at C-14 are exchanged, or the D/E ring juncture is trans rather than cis as in vincamine.⁴

The reduction of the alkaloid with LiAlH_4 was carried out in the same way as for vincamine⁵ and diol III was obtained. The keton V (m.p. $174-175^{\circ}$) resulting from oxidation of diol III with periodic acid was identical with (-)-eburnamonine (= vincamone) (V), obtained through oxidation of vincaminol (IV)⁵. The infrared spectra were superimposable. The presence of formaldehyde was proven in the mother liquors after the oxidation.

³ M. Plat, D. Dohkao Manh, J. LeMen, M. M. Janot, H. Budzikiewicz, J. M. Wilson, L. J. Durham and C. Djerassi, <u>Bull. Soc. Chim.</u> France, 1962, 1082.

⁴ J.Mokrý, M.Shamma and H.E.Soyster, <u>Tetrahedron Letters</u>, No.<u>15</u>. 999 (1963).

⁵ J.Mokrý, I.Kompiš, J.Suchý, P.Šefčovič and Z.Votický, <u>Chem.Zvesti</u>, <u>17</u>, 41 (1963).

Through heating of the alkaloid in dry methanol saturated with gaseous HCl apovincamine (VI), identical with the product obtained through dehydration of vincamine^{6,7} was obtained in good yield.

These chemical proofs explicitly show the new alkaloid to be 14-epivincamine.

		^R 1	^R 2
I	14-epivincamine	сн ₃ 00с-	но-
II	vincamine	H0-	сн ₃ 00с-
III	14-epivincaminol	но-сн ₂ -	H0-
IV	vincaminol	H O -	HO-CH2-
V	(-)-eburnamonine	0=	

VI apovincamine

The stereochemistry of vincamine and 14-epivincamine at C-14 will be discussed in the near future.

<u>Acknowledgement</u>: We wish to thank Dr.L.Dolejš, Institute of Organic Chemistry and Biochemistry of the Czechoslovak Academy of Sciences, Prague, for running the mass spectrum.

⁶ J.Trojánek, O.Štrouf, J.Holubek and Z.Čekan, <u>Tetrahedron</u> <u>Letters</u>, No.<u>20</u>, 702 (1961).

⁷ J. Mokrý, I. Kompiš, J. Suchý, P. Šefčovič and Z. Votický, <u>Chem. Zvesti</u>, <u>16</u>, 140 (1962).